
Most financial organizations are heavily dependent on internally-
developed spreadsheets. Spreadsheets are nimble tools for
quickly developing complex financial models and immediately
viewing the results. Their main strengths are their flexibility and
their ease of use; demanding little or no formal training in
programming. Upon these quick victories users eagerly add
layers of sophistication and complication. Versions of the same
core spreadsheet start to pop up everywhere and organizations
quickly end up with spreadsheets escalating into mission-critical
applications or databases.

We are all familiar with the day-to-day small frustrations of working
with spreadsheets. A forgotten closing parenthesis or deleted cell
yields results of “#N/A” and “#REF!”. On a grander scale, there are
headline-grabbing disasters such as Allied Irish Bank’s loss of
$700 M due to a trader manipulating a spreadsheet to hide his
losses, and a few years back Fannie Mae misstating earnings by
$1 Bn due to a spreadsheet mistake.

However, the biggest losses arguably come from accumulated
day-to-day operational inefficiencies. Spreadsheets containing the
organization’s most vital data and most sophisticated analytics are
often stranded on desktop PCs, inaccessible to the rest of the
organization. This makes it difficult to get a single picture of what
is going on in the organization. Also, by their nature, spreadsheets
are easy to change. They quickly become non-standard, such that
senior management are never quite sure that two results are
comparable.

The problems associated with spreadsheets fall into four classes:
problems in building them, problems in using them, trying to run
them as applications, and, finally, data management. The
problems in building spreadsheets accurately has traditionally
been addressed by training and policies or procedures checking.
Recently, new software tools have been developed which
monitor and control any changes made to the spreadsheet. There
are now several spreadsheet-aftermarket audit tools to assist
construction.

The problems with using spreadsheets stem from people making
unauthorized changes, using them incorrectly, or feeding inputs
into them that are wrong. Several approaches have been
introduced to mitigate these risks. The earliest were within the
spreadsheet application itself whereby calculations could be
locked and data inputs could be validated. Now, third-party
vendors are offering solutions which centrally monitor the use of
spreadsheets, and make standardized spreadsheets available to
all users. Monitoring the use of spreadsheets is a good deterrent
to users who know that any illicit actions will be recorded and
traceable.

Running the Company on Spreadsheets
Dr. Chris Marrison, Founder and CEO, Risk Integrated

Solving the problems of running the spreadsheet as an
application and managing the data inputs, outputs and storage
requires a radically different solution. For applications with many
users, large amounts of data and heavy processing requirements,
the traditional procedure has been: (i) first build a prototype
spreadsheet; (ii) when the calculations have been proven in the
spreadsheet, translate the calculations into a robust
programming language such as C++; (iii) finally, link this
application to the enterprise databases, reporting framework, and
user interfaces. The problem with this approach is that it takes a
very long time to get on the IT department’s priority list, have a
programmer understand the requirement, change the sequence
of calculations to fit the new language, program it, and then have
it checked and de-bugged thoroughly by the original analyst.

From the analyst’s point of view, this is just implementation, but it
can be a multi-million dollar nightmare that never quite works as
intended. By the time it is implemented, the original users have
lost faith and interest. This translation task is so daunting that
many applications that really should be run as enterprise systems
are left for years as spreadsheet applications on someone’s
desktop machine, held together by Visual Basic macros and plain
manual labor.

Risk Integrated faced this problem when trying to implement its
complex cashflow simulation models for many banking clients.
The Risk Integrated solution was to create the Enterprise
Spreadsheet Platform (ESP). ESP embeds the spreadsheet inside
a C++ wrapper application, callable from within the enterprise
computing framework. The C++ layer allows the spreadsheet
application to be linked to the bank’s main servers, centralizes all
computations, and lets users access them via the web.
End-users interact only with the application layer via their web
browser and never have direct access to changing the core
spreadsheet. Only the organization’s designated expert
superusers are able to view and modify the underlying
spreadsheet analytics. These superusers view and manipulate
the familiar spreadsheet format rather than lines of
programming code.

The underlying principle is that each programming tool should be
used for what it does best: Excel for financial modeling, C++ for
computationally-intensive statistical calculations and data
transport and enterprise databases for data storage, and a
web-based framework for user interfaces. These new
solutions bridge the gap between scattered spreadsheets and
enterprise applications. They bring the benefits of transparency,
flexibility, security and operational efficiency without the cost of
creating traditional enterprise systems. Most importantly, with
spreadsheets properly controlled, management can be confident
that they know what is going on.

The underlying principle
is that each programming
tool should be used for
what it does best.

